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Abstract: In the framework of estimating finite mixture distributions we con-
sider a sequential learning scheme which is equivalent to the EM algorithm in
case of a repeatedly applied finite set of observations. A typical feature of the
sequential version of the EM algorithm is a periodical substitution of the esti-
mated parameters. The different computational aspects of the considered scheme
are illustrated by means of artificial data randomly generated from a multivariate
Bernoulli distribution.

1 Introduction

The problems of sequential estimating finite mixture distributions arise rou-
tinely in the fields of pattern recognition and signal detection, frequently in
the context of unsupervised learning and neural networks. The observations
are assumed to be received sequentially, one at a time and the estimates of
parameters have to be updated after each observation without storing the
observed data. Recently (cf. Grim (1996), Vajda, Grim (1997)) we consid-
ered a probabilistic approach to neural networks based on finite mixtures and
the EM algorithm. In this case the existence of a sequential version of the
EM procedure is an important condition of neurophysiological plausibility.

Sequential methods of estimating finite mixtures have been considered by
many authors (cf. Titterington et al. (1985), Chapter 6 for a detailed discus-
sion). However, in most cases the problem is not formulated in full generality
and/or the solution is computationally intractable for multivariate mixtures.
Also the methods are usually related to stochastic approximation techniques
and therefore the important monotonic property of the EM algorithm is lost.

In the present paper we consider a sequential scheme which is equivalent
to the EM algorithm in case of a repeatedly applied finite set of observa-
tions. As the equivalence does not apply for non-periodical sequences of
data we use the term pseudo-sequential EM algorithm. A typical feature of
this scheme is a periodical substitution of the estimated parameters. The

0An early version of the paper: Grim J., ”A sequential modification of EM algo-
rithm”. In Studies in Classification, Data Analysis and Knowledge Organization, Gaul
W., Locarek-Junge H., (Eds.), pp. 163-170, Springer, 1999.
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updated parameters are not substituted into the estimated mixture immedi-
ately after each observation but only periodically after the last data vector
of the training set. The considered pseudo-sequential procedure suggests
some possibilities to speed up the EM algorithm and simultaneously, there
is a natural possibility to extend the pseudo-sequential scheme to infinite
sequences of observations. Different computational aspects of the present
paper are illustrated by means of artificial multivariate binary data.

2 EM algorithm

Let x = (x1, · · · , xN) be a vector of binary variables x ∈ {0, 1}N and P (x)
be a finite mixture of multivariate Bernoulli distributions

P (x) =
∑

m∈M
f(m)F (x|m), F (x|m) =

∏

n∈N
fn(xn|m), (1)

fn(xn|m) = θxn
nm(1− θnm)1−xn ,

∑

m∈M
f(m) = 1,

M = {1, 2, . . . ,M}, N = {1, 2, . . . , N}.
Here f(m) ≥ 0 is the a priori weight of the m -th component and fn(xn|m)
are the related discrete distributions of the binary random variables.

The EM algorithm can be used to compute maximum-likelihood estimates
of the involved parameters (cf. Dempster et al. (1977), Grim, (1982)). We
assume that there is a set S of independent observations of a binary random
vector

S = {x1,x2, . . . , xK}, xk ∈ {0, 1}N (2)

with some unknown distribution of the form (1). The corresponding log-
likelihood function

LS =
1

|S|
∑

x∈X

log[
M∑

m=1

f(m)F (x|m)] (3)

can be maximized with respect to the unknown parameters by means of the
following EM iteration equations:

f(m|x) =
f(m)F (x|m)∑
j∈M f(j)F (x|j) , m ∈M, x ∈ S, (4)

f
′
(m) =

1

|S|
∑

x∈S
f(m|x), m ∈M, (5)

f
′
n(ξ|m) =

1∑
x∈S f(m|x)

∑

x∈S
δ(ξ, xn)f(m|x), ξ ∈ {0, 1}, n ∈ N . (6)
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Here f
′
, f

′
n are the new values of parameters and δ(ξ, xn) denotes the delta-

function. The EM algorithm produces a non-decreasing sequence of values
of the log-likelihood function converging to a local or global maximum of
LS . The proof of convergence properties is largely based on the following
inequality first proved by Schlesinger (1968) for successive values LS , L

′
S :

L
′
S − LS =

∑

m∈M
f
′
(m) log

f
′
(m)

f(m)
+

1

|S|
∑

x∈S

∑

m∈M
f(m|x) log

f(m|x)

f ′(m|x)
+

+
∑

m∈M
f
′
(m)

∑

n∈N

∑

ξ∈{0,1}
f
′
n(ξ|m) log

f
′
n(ξ|m)

fn(ξ|m)
≥ 0. (7)

For a detailed discussion of different aspects of convergence see e.g. Demp-
ster et al. (1977), Grim (1982), Wu (1983), Titterington et al. (1985).

In the following sections we illustrate different computational aspects of the
considered procedures by means of artificial data randomly generated from a
16-dimensional Bernoulli distribution. The parameters of the source mixture
having three components were chosen randomly from suitably defined inter-
vals (cf. Grim (1983)). In order to avoid any small sample effects we used
a sufficiently large data set of 10000 binary vectors. The lower five-tuple
of curves on Fig. 1 shows typical convergence curves of the EM algorithm
starting form five different randomly chosen points. For the sake of compar-
ison the same sets of initial parameters have been used in all computational
experiments.

3 Pseudo-sequential EM algorithm

We create an infinite data sequence by repeating the finite set (2):

{x(t)}∞t=0, x(t) = xk ∈ S, k = (t mod K) + 1. (8)

It is easily verified that the EM algorithm (4) - (6) can be equivalently
rewritten as follows:

f(m|x(t)) =
f(m)F (x(t)|m)∑
j∈M f(j)F (x(t)|j) , m ∈M, t = 0, 1, 2, . . . (9)

f (t+1)(m) = (1− 1

k
)f (t)(m) +

1

k
f(m|x(t)), f (0)(m) = f (0)

n (ξ|m) = 0, (10)

f (t+1)
n (ξ|m) = (1− f(m|x(t))

kf (t+1)(m)
)f (t)

n (ξ|m) + δ(ξ, x(t)
n )

f(m|x(t))

kf (t+1)(m)
, (11)

f
′
(m) = f (K)(m), f

′
n(ξ|m) = f (K)

n (ξ|m), ξ ∈ {0, 1}. (12)

As expressed by Eqs. (12) the updated parameters f (t)(m), f (t)
n (ξ|m) are not

substituted into f
′
(m), f

′
n(ξ|m) immediately after each observation but only

periodically, at the end of each cycle, i.e. for t = K.
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It should be emphasized that the EM algorithm and its sequential version
(9) - (12) are equivalent in the sense that they produce identical sequences of
parameters for identical initial values. Obviously, the important monotonic
property (7) and all the well known convergence properties of the EM algo-
rithm remain valid for the sequential scheme (9) - (12). Nevertheless, we use
the term “pseudo-sequential” because the equivalence does not apply to data
sequences which are not periodical. Fig. 2 illustrates the non-monotonic
behavior of the pseudo-sequential EM algorithm when it is applied to a non-
periodical sequence of data. In Sec. 6 we suggest a truly-sequential version
of the EM algorithm but the justification is only heuristical.

Note that the initial values f (0)(m), f (0)
n (ξ|m) are irrelevant since for t being

a multiple of K the first term on the right-hand side of Eqs. (10), (11)
is zero. Let us recall also that the sequential procedure is invariant with
respect to the order of data vectors between substitutions (cf. (5),(6)).

Remark. The periodical substitution of parameters can be interpreted from
a neurophysiological point of view. It is generally assumed that the adap-
tivity of neurons is based on some relatively slow biochemical processes.
For this reason the functional properties of neurons cannot be expected to
change continuously, as an immediate consequence of a specific activity of
neurons. We can rather assume that the functioning of neural network specif-
ically influences e.g. the concentration of some chemical stuffs or energetic
balance of neurons and, in this way, some metabolical changes or growth
processes responsible for adaptation can be initialized. Consequently, some
delay would occur between a specific activity of a neuron and its adaptive
changes. In this sense, periodical substitutions could correspond to sleep
phases or to daily cycles. The invariance of adaptive changes with respect
to data ordering is also a relevant argument for the present interpretation.

4 Truncated iteration cycle

Motivated by the sequential EM algorithm (9) - (12) we consider first some
possibilities to speed up the convergence of the EM algorithm. As it can
be assumed in case of randomly chosen starting points, the estimated pa-
rameters usually change substantially at initial phases of computation. In
other words, at initial iterations the computed estimates are “handicapped”
by their previous inaccurate values influencing the weights (9). For obvious
reasons this handicap cannot be fully removed by using larger data set but,
on the other hand, it could be possible to save computing time by using only
some smaller portion of data when computing the initial “rough” estimates.

Proceeding along this line we assume a partition of the sequence S in two
parts S = S1∪S2 and define the parameters f [i](m), f [i]

n (ξ|m) in analogy with
(5),(6) for S ≈ Si, i = 1, 2. We are interested to guarantee the monotonic
condition (7) by the parameters f [1](m), f [1]

n (ξ|m) based on a subset S1 ⊂ S
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since, in this way, we could save computing time. We can write (cf. (7))

L
[1]
S − LS ≥ |S1|

|S|
∑

m∈M
f [1](m) log

f [1](m)

f(m)
+
|S2|
|S|

∑

m∈M
f [2](m) log

f [1](m)

f(m)
+

+
∑

n∈N

∑

m∈M
{|S1|f [1](m)

|S|f ′(m)

∑

ξ∈{0,1}
f [1]

n (ξ|m) log
f [1]

n (ξ|m)

fn(ξ|m)
+ (13)

+
|S2|f [2](m)

|S|f ′(m)

∑

ξ∈{0,1}
f [2]

n (ξ|m) log
f [1]

n (ξ|m)

fn(ξ|m)
}

and further, using notation

I(f
′
(·), f(·)) =

∑

m∈M
f
′
(m) log

f
′
(m)

f(m)
, (14)

we can write the inequality

L
[1]
S − LS ≥ |S1|

|S| I(f [1](·), f(·)) +
|S2|
|S| min

m∈M
{log

f [1](m)

f(m)
}+

+
∑

n∈N

∑

m∈M
{ |S1|
|S1|+ |S2|/f [1](m)

I(f [1]
n (·|m), fn(·|m))+ (15)

+
|S2|

|S2|+ |S1| ∗ f [1](m)
min

ξ∈{0,1}
{log

f [1]
n (ξ|m)

fn(ξ|m)
}}.

If the right hand side of the last inequality is positive then the increase of
the criterion LS is guaranteed without including the remaining data S2 into
computation. This condition can be used to choose the minimum necessary
size of the sequence S1 since all the involved quantities are available at each
step of the sequential process. As a result we would obtain so called gener-
alized EM algorithm (cf. Dempster et al. (1977)) with similar properties.
Unfortunately, the lower bound obtained in (15) is probably to rough, since
in our numerical experiments we achieved only small savings in initial phases
of computation.

5 Intermediate updating of parameters

Another way to speed up the convergence of the EM algorithm is to uti-
lize the information accumulating sequentially in the parameters (10), (11)
before the end of the substitution period. In particular, we assume a finite
partition

S =
I⋃

i=1

Si, Ni =
i∑

l=1

|Sl|, (NI = |S|) (16)
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and define the intermediate updates of the estimated parameters

f [l−1](m|x) =
f [l−1](m)F [l−1](x|m)∑
j∈M f [l−1](j)F [l−1](x|j) , x ∈ S, m ∈M, (17)

f [i](m) =
1

Ni

i∑

l=1

∑

x∈Sl

f [l−1](m|x), i = 1, . . . , I, f [0](·) ≈ f(·), (18)

f [i]
n (ξ|m) =

1

Nif [i](m)

i∑

l=1

∑

x∈Sl

δ(ξ, xn)f [l−1](m|x), ξ ∈ {0, 1}. (19)

At the end of the substitution period (i = I) the estimated parameters are
given by

f̃(m) = f [I](m), f̃n(ξ|m) = f [I]
n (ξ|m), ξ ∈ {0, 1}, m ∈M, n ∈ N . (20)

Eqs. (17) - (20) correspond to one iteration of the EM algorithm but they
are not equivalent to the original Eqs. (4) - (6). The increment of the log-
likelihood function corresponding to the Eqs. (17) - (20) can be expressed
in the form

L̃S − LS =
1

|S|
I∑

i=1

∑

x∈Si

∑

m∈M
f [i−1](m|x) log

f(m|x)

f̃(m|x)
+

+
∑

m∈M
f̃(m) log

f̃(m)

f(m)
+

∑

m∈M
f̃(m)

∑

n∈N

∑

ξ∈{0,1}
f̃n(ξ|m) log

f̃n(ξ|m)

fn(ξ|m)
. (21)

Generally, expression (21) may be negative because of the first sum, but
we had to use a very small data set (|S| ≈ 102) to demonstrate the non-
monotonic behavior of the sequential procedure (17) - (20). In computa-
tional experiments the intermediately updated parameters (20) essentially
improved the initial iterations.

It appears that a fixed partition (16) increases the increments of initial it-
erations but disturbs the final convergence. In accordance with this idea
we obtained the best results by making the partition (16) coarser after each
substitution and by using non-partitioned set S in the final stages of compu-
tation. The convergence curves obtained for |Si+1| = |Si| + 500i are shown
on Fig.1 (upper five-tuple of curves).

Let us recall that by intermediate updating of parameters we obtain a pro-
cedure which is not more equivalent to the EM algorithm and therefore the
basic convergence properties are not guaranteed. Nevertheless, we can treat
the initial computation as a heuristical improvement of starting values, as
long as it holds |Si| ≤ |S|. Further iterations using the non-partitioned set
S correspond to the standard EM algorithm again.
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6 Concluding remarks

It can be seen that Eqs. (17) - (20) represent a truly-sequential procedure
for an infinitely large set S and for I → ∞. However, the corresponding
computational experiments have shown a relatively slow convergence (cf.
Fig.3). The value of the criterion is given by the formula

L[i] =
1

Ni

i∑

l=1

∑

x∈Sl

log[
M∑

m=1

f [l−1](m)F [l−1](x|m)], (22)

Ni =
i∑

l=1

|Sl|, i = 1, . . . , I.

and the iteration steps are recomputed to the multiples of 10000 in analogy
with Fig. 2, though an exact comparison with periodical sequences is not
possible.

Let us recall also (cf. Sec. 5) that, in general, the convergence properties of
the truly-sequential procedure are not guaranteed.
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Fig 1. Convergence of EM algorithm from five different starting points compared
with an accelerated modification (upper five-tuple of curves, cf. Sec.5).

Fig 2. EM algorithm applied to infinite sequence of data sets (|Si| = 10000).

Fig 3. A sequential modification of EM algorithm (cf. Sec.6) applied to infinite
sequence of data sets (comparison with Fig.2).

8


